

Challenges in Green Gas

Towards a role for green gases in energy transition scenario's

Presentation at the IGRC 2011 – October 20th Ton van Wingerden, Harm Vlap, <u>Jörg Gigler</u>

Contents

- Short introduction to KEMA
- Perspective: gas in the Netherlands
- Pathways to green gas production
 - Ambitions
 - Cost
 - Safety
- Process chain developments
- Concluding remarks

Covering the entire energy value chain

Gas and Electricity

One company serving the diverse needs of the energy marketplace

Offering services around the globe!

The Netherlands: a natural gas country

Primary energy [MTOE]

- Net Electricity Import
- Renewables
- Other

Green Gas in the Netherlands

- Green gas is biogas upgraded to 'natural gas quality'
- Landfill gas: since 1987
- Fermentation gas: since 1995

Biogas in numbers (2009)

2009: <u>318 mln</u> m³ equivalent gas (incl. 40 mln m³ green gas) 2011: expected 300 mln m³ green gas

Source: CBS, 2010

Policy ambitions for green gas

Transition route for replacing natural gas

Solar to Biomass efficiency is low!

Surface area for gas production from biomass in 2030^{*}

* Assuming 50% energy efficiency

Three pathways to green gas production

Digestion (now)

• Gasification (mid term)

Methanation (long term)

Methanation pathway (1)

Methanation pathway (2)

Methanation pathway (3)

- Utilizes the existing infrastructure
- Integrates (knowledge) of CCS, sustainable electricity and hydrogen
- Cheap long term storage
- No interference with the Food Feed Energy discussion
- No water problems
- The Netherlands are excellent experimental field

Farm waste: fermentation limitations in the Netherlands

- If at least 50% of substrate is manure the digestate may be used as fertilizer; if not, it classifies as chemical waste
- Co-substrate should be on the "positive" list (corn), or it classifies as chemical waste
- All manure that is transported is sampled (for mineral content)
- If digester size > 100 tons/day →
 Environmental Impact Assessment required

Three scenario's for green gas production

Characteristics of dairy waste: small farms, order of 100 cows or smaller

Comparison of three scenario's

Matching supply and demand, distribution grid

Alternatives for summer period

- Flaring the surplus gas
- Compress and feed into the high pressure network
- Compress and use for natural gas vehicles
- Fuel for a CHP-unit with heat distribution

Cost analysis of alternatives

Subsidy essential

CO₂ avoided cost of alternatives

Credit of €20/ton?

Requirements for injection into high pressure (transmission) gas grid

- Gas composition \rightarrow processing and measurement
- Process Optimization and measurement
- Certification as green gas (subsidy)

Specification (natural) gas components

	Biogas	TSO (RTL)	DSO*
CO ₂	30-50 %	<8 %	?
CH ₄	50-70 %		
N ₂	(<10 %)		
O ₂	(<2 %)	<0,5 %	<0,5 %
H ₂	(<0,5 %)	<0,02 %	12 %
H ₂ O	5-10 %	40 mg/Nm3	250 mg/Nm3
Dewpoint	40°C @1	-8°C @72	10°C @ 8 bar
H ₂ S	100 ppm-1,5 %	5 mg/Nm3	5 mg/Nm3
W _i (MJ/Nm ³)		43,36-44,41	43,36-44,41
DSO spec: under construction (will move towards TSO spec,			
except for CO2 - flame stability)			

Process Optimization: current activities

- Removal of Micro-organisms
- Odorization unit for low flows
- Low cost measuring equipment and goalkeeper

Certification: Vertogas

Green gas can be sold to consumers - scheme to guarantee authentic trade and qualify for subsidy

Pilot plant in Zwolle: 2 million m³/year from domestic biomass

Some images of the pilot plant (Zwolle)

Concluding remarks

- Green gas injection is an option for using natural gas as facilitator of renewables
- Production and upgrading gas from dairy/domestic waste is achievable, including injection into high pressure system, but it is expensive (in NL) - subsidies are essential at present
- Limitations due to scale, laws regarding waste products, gas quality standards
- Ultimate domestic potential limited by available area for biomass
- Room for innovation in treatment schemes and monitoring

Thank you for your attention

Jörg Gigler, PhD Manager Sustainability & Clean Energy KEMA Gas Consulting & Services Energieweg 17 9743 AN Groningen The Netherlands

> Phone: +31 50 700 9727 e-mail: jorg.gigler@kema.com

